分享好友 资讯首页 频道列表

十个 Python 小技巧,覆盖了90%的数据分析需求!

2022-03-09 18:005120

数据分析师日常工作会涉及各种任务,比如数据预处理、数据分析、机器学习模型创建、模型部署。

在本文中,我将分享10个 Python 操作,它们可覆盖90%的数据分析问题。有所收获点赞、收藏、关注。

1、阅读数据集

阅读数据是数据分析的组成部分,了解如何从不同的文件格式读取数据是数据分析师的第一步。下面是如何使用 pandas 读取包含 Covid-19 数据的 csv 文件的示例。

import pandas as pd
# reading the countries_data file along with the location within read_csv function.
countries_df = pd.read_csv('C:/Users/anmol/Desktop/Courses/Python for Data Science/Code/countries_data.csv')
# showing the first 5 rows of the dataframe
countries_df.head()

以下是 countries_df.head() 的输出,我们可以使用它查看数据框的前 5 行:

2、汇总统计

下一步就是通过查看数据汇总来了解数据,例如 New/confirm/ied、TotalConfirmed 等数字列的计数、均值、标准偏差、分位数以及国家代码等分类列的频率、最高出现值

countries_df.describe()

使用 describe 函数,我们可以得到数据集连续变量的摘要,如下所示:

在 describe() 函数中,我们可以设置参数"include = 'all'"来获取连续变量和分类变量的摘要

countries_df.describe(include = 'all')

3、数据选择和过滤

分析其实不需要数据集的所有行和列,只需要选择感兴趣的列并根据问题过滤一些行。

例如,我们可以使用以下代码选择 Country 和 NewConfirmed 列:

countries_df[['Country','New/confirm/ied']]

我们还可以将数据过滤Country,使用 loc,我们可以根据一些值过滤列,如下所示:

countries_df.loc[countries_df['Country'] == 'United States of America']

4、聚合

计数、总和、均值等数据聚合,是数据分析最常执行的任务之一。

我们可以使用聚合找到各国的 NewConfimed 病例总数。使用 groupby 和 agg 函数执行聚合。

countries_df.groupby(['Country']).agg({'New/confirm/ied':'sum'})5、Join

使用 Join 操作将 2 个数据集组合成一个数据集。

例如:一个数据集可能包含不同国家/地区的 Covid-19 病例数,另一个数据集可能包含不同国家/地区的纬度和经度信息。

现在我们需要结合这两个信息,那么我们可以执行如下所示的连接操作

countries_lat_lon = pd.read_excel('C:/Users/anmol/Desktop/Courses/Python for Data Science/Code/countries_lat_lon.xlsx')

# joining the 2 dataframe : countries_df and countries_lat_lon
# syntax : pd.merge(left_df, right_df, on = 'on_column', how = 'type_of_join')
joined_df = pd.merge(countries_df, countries_lat_lon, on = 'CountryCode', how = 'inner')
joined_df6、内建函数

了解数学内建函数,如 min()、max()、mean()、sum() 等,对于执行不同的分析非常有帮助。

我们可以通过调用它们直接在数据帧上应用这些函数,这些函数可以在列上或在聚合函数中独立使用,如下所示:

# finding sum of NewConfirmed cases of all the countries
countries_df['New/confirm/ied'].sum()
# Output : 6,631,899

# finding the sum of NewConfirmed cases across different countries
countries_df.groupby(['Country']).agg({'New/confirm/ied':'sum'})

# Output
# New/confirm/ied
#Country
#Afghanistan 75
#Albania 168
#Algeria 247
#Andorra 0
#Angola 537、用户自定义函数

我们自己编写的函数是用户自定义函数。我们可以在需要时通过调用该函数来执行这些函数中的代码。例如,我们可以创建一个函数来添加 2 个数字,如下所示:

# User defined function is created using 'def' keyword, followed by function definition - 'addition()'
# and 2 arguments num1 and num2
def addition(num1, num2):
return num1+num2

# calling the function using function name and providing the arguments
print(addition(1,2))
#output : 38、Pivot

Pivot 是将一列行内的唯一值转换为多个新列,这是很棒的数据处理技术。

在 Covid-19 数据集上使用 pivot_table() 函数,我们可以将国家名称转换为单独的新列:

# using pivot_table to convert values within the Country column into individual columns and
# filling the values corresponding to these columns with numeric variable - NewConfimed
pivot_df = pd.pivot_table(countries_df, columns = 'Country', values = 'New/confirm/ied')
pivot_df9、遍历数据框

很多时候需要遍历数据框的索引和行,我们可以使用 iterrows 函数遍历数据框:

# iterating over the index and row of a dataframe using iterrows() function
for index, row in countries_df.iterrows():
print('Index is ' + str(index))
print('Country is '+ str(row['Country']))

# Output :
# Index is 0
# Country is Afghanistan
# Index is 1
# Country is Albania
# .......10、字符串操作

很多时候我们处理数据集中的字符串列,在这种情况下,了解一些基本的字符串操作很重要。

例如如何将字符串转换为大写、小写以及如何找到字符串的长度。

# country column to upper case
countries_df['Country_upper'] = countries_df['Country'].str.upper()

# country column to lower case
countries_df['CountryCode_lower']=countries_df['CountryCode'].str.lower()

# finding length of characters in the country column
countries_df['len'] = countries_df['Country'].str.len()

countries_df.head()

反对 0
举报 0
收藏 0
打赏 0
评论 0
数据分析的12个神话被揭穿!
从数据问题到人员需求再到技术组合,数据分析的误解比比皆是。下面我们来看看如何利用数据科学来实现真正的业务成果。

0评论2022-04-01439

数据分析八大模型:漏斗模型
今天跟大家分享的是漏斗模型。漏斗模型,是一个大家能在各式各样的场合听到,但是总是感觉没

0评论2022-02-22350

用 Pandas 做 ETL,不要太快
久违了,朋友们,来篇干货。 ETL 的全称是 extract, transform, load,意思就�

0评论2022-02-22407

工作十年的数据分析师被炒,没有方向,你根本躲不过中年危机
很多人都说数据分析是个好饭碗,工作不累薪资高、入门简单又好学。然�

0评论2021-10-26522

如何使用Power BI提取数据的真正价值?
商业智能、报告和数据可视化是数据分析的组成部分。这些共同帮助组织采用数据驱动模型并简化业务流程。市场上著�

0评论2021-10-25423

九大数据分析方法之:标签分析法
  大家好,我是爱学习的小xiong熊妹。 今天继续介绍九大数据分析方法系列。上一篇

0评论2021-10-25419

华为发布数字基础设施七大创新:业界首个面向HPDA的分布式存储OceanStor Pacific,引领高性能数据分析时代
华为发布数字基础设施七大创新:业界首个面向HPDA的分布式存储OceanStor Pacific,引领高性能数据分析时代 【原创】 2021-09-24 15:51:24关键字: 分布式存储 数字基础设施在华为全联接2021上,华为首次从

0评论2021-10-14589

使用数据分析成为有利可图交易的五种方法
大数据对金融业产生了巨大的影响。新数据技术最大的金融应用之一涉及股票交易。 通过投资优秀分析技术,企�

0评论2021-10-14418

这可能是全网最有用的【数据分析师求职攻略】
作为一名在数据行业摸爬滚打了十余年的老人,我面试过很多人,也参加�

0评论2021-09-30502